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0. INTRODUCTION, BACKGROUND, AND SUMMARY

There are many situations in which an operator (single individuallor'group

or crew) is confronted with a somewhat complex task that must be acorhplished

within prescribed time limits. The task actually often initially requires diagnos-

tic steps followed by action. In some cases the diagnostic steps are stimulated

by a cue event, leading to probing actions intended to rev'U the correctness

of a tentative diagnosis, followed by observation and interpretation of system

response, in turn followed by viewpoint revision and further action. While it

is intriguing to attempt to model response in such detailed terms, this paper

does not embark on that enterprise. Rather, we provide and analyze models for

the resulting overall response time of different operators to different tasks where

response is initiated by one or more cues provided by the system. Two factor-

analytic models are presented along with likelihood estimation procedures. The

latter are then employed to analyze data sets from typical exercises conducted

at simulators used for training nuclear power plant operators; their identities

are kept anonymous. (The findings of the model are critiqued, and applications

to risk analysis are sketched.)



It is believed that similar models will be u.,;cfud for summarizing the behavior

of operators or crews in other situations, both military and otherwise. For

example, application to military tank driver performance is envisioned.
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1. A MIXED OR LATENT FACTOR MODEL WITH THE

UNEQUA!, CASE FIXED EFFECTS AND VARIANCES

(LOG N MODEL).

Consider this linear model of mixed type:
Yk = + Vk + Woi + Eik i=12..

k =1,2,...K. (1)

where Yk = IlnTik with Tik being the time for crew i to respond to situation k;

,u and vk are fixed constants (effects), and wi .- IIDN(0,aru2), fik - IIDN(O, oh),

are, respectively, the latent r,ndom component that "individualizes" case (in-

dividual, crew, etc.) i, and the random variation displayed by any individual

on situation (task, problem, etc.) k. It is assumed that each case occurs in

conjunction with each situation (e.g. a person confronts a particular problem)

just once in the data set to be modelled. In practical circumstances, some such

individual interactions rnay be missing for reasons unrelated to individuals and

situations, a problem that is deferred for the present; see Appendix A and B.

As implied, the model described may well be of interest when data pertaining

to human performance are to be analyzed, but should also be of use elsewhere.

The K tasks or items are allowed to have their own fixed response properties,

described by (Vk,a2); this pair will be referred to as a task signature. The usual
mixed ANOVA model formulation assumes a2 = a 2 , constant for all k (see

Scheff6 (1959)), as is reasonable when measurement error is represented.

Note that because of the assumption of possibly unequal ok's a fixed-woi model

cannot be usefully estimated by likelihood. Consequently the above random-

effect model has been introduced, and fitted to data. As will be apparent, it

is possible to estimate the posterior density for wi using Bayes' formula in the

style of empirical Bayes; the mean of the resulting Normal/Gaussian density

E[widata,log N model], is available as an estimate of the ith crew effect if so

desired.

That the above setup is a latent factor model has been remarked to us

by Professor T. W. Anderson; see Anderson (1988) Chapter 14 for relevant

3



coverage in the Normal/Gaussian case. Brilinger and Preisler (1983) survey

various other latent factor data-analytical studies in non-Gaussian settings; this

includes a detailed discussion of a latent factor Poisson model for counting data.

Brillinger's paper is interesting in that it suggests examining goodness of model

fit by "uniform residuals," a procedure considered in our study as well.

Fitting the LOG N model by likelihood requires iterative calculations; the

setup is described in the next section. In case one wishes to "robustify" the

formulation, perhaps by introducing more outlier-prone specifications such as the

Student t or Tukey density for wi then more numerical effort, or approximation

is required. Use of the Laplace approximation together with Gauss-Hermite

integration may well turn out to be useful; see Gaver and O'Muircheartaigh

(1987), and Gaver, Jacobs and O'Muircheartaigh (1990). In a later section a

totally non-Normal/Gauss model for operator response times is introduced and

fitted.
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2. FITTING THE LOG-NORMAL MODEL BY MAXIMUM

LIKELIHOOD

In the model (1) the individualizing case effect, wi for case i is viewed as

a latent or unobserved rv whose effect on the Yik observable is indirect. What

is the probability distribution of Yk,k = 1,2,... K in terms of the unknown

parameters? Clearly it is multivariate normal since wi and fik occur as a sum;

the density for case (crew) i is, by conditional independence, given .,

K

fw e 2

k=1

K

-I (Yik - / - - i )2/ (2)

e k=1

K

(V/-7)K 1llak
k=1

To obtain the unconditional density of y. remove the condition on wi:

The calculation needed ("completion of the square" in the exponent) can be

expeditiously performed as follows. Recognize that the exponent is quadratic in

w; put

I (Ey, _W) 2  K K, 2
_- T - - E (Y,k-W-k-l)/ , (4)

k=1

K, being independent of w. To find Di,T 2 , and Ki differentiate (2.3) re w and

equate coefficients of w and 1:

( W -w) KW
2 (Yk 0 - -(5)

k=1

so, from the w-term,
K

Z1/, (6)
k=i
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while from the 1-term

K

,I = Yik - /I- Vk) IO,, (7)
k=1

giving
K

= (i- - 5Yiw -- )W .-- (p + ..) (8)
k=1

where Wk = (1/ak) r 2 = (i/10) /jK_= /r2; yJ. and v. are thus Wk-weighted

averages. Substitution into (4) gives

K

-i = -(Yik -k -- 2 1- ,(/)
k=1

K K 2 2E [Yik - -Vk--E"(ik-- -Vk)WVk 1/0k (9)

k=1 k=1

K

= 1[(Yik - Yi.) - (Vk - V.)12 1iar.
k=l

Now from (2)

fy. (y.; ,, 2, Cr'2 - e- l , ) I2 1- I2 ,

_Ka2 ,aj) = /( ) dw, (10)

a familiar convolution, from which

- 1(-,)2u1 21 q.2)
f Y .(y ; it, V , q,2 , a 2 ) : -e -' .. .2

K

Thus the likelihood of p, y,_a 2 is proportional to
I - I -Z-

- - I r (12)

e= 2j Te 2 -
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and hence the log -likelihood, 1, may be expressed as

2 1(, v, a2 , 2 ;y) = I In r 2 -

K (13)11:,lnT'-I ln(r-2 + a ) y oh,2 -K _ (wj)'/(r 2 + a , )

k=1 i=1

Differentiation gives these estimates:

l=1

so
1 t 1 t

--V Yk- L Yik Wk
i1 k=1 (15)

(Y. -Y*.).

Next,

z Y.(0v) (16)0(ji + .)-0 I +a = (Yi.- - (Ax + V,.)) (6

so

ti-t,.=Y.. (17)

These of course closely resemble conventional ANOVA estimates.

When estimating variances it is convenient to reparameterize in terms of

precision: Pk = la, p1 lr 2 =1__ lk= k k=1 Pk.

Then

1 = I -(lip) 2  (-1)(-(I/p)2) 2
0 + ,1/p+(a()- (A))- (18)(9pk P Pk li ' (i )2

where I
I (k) =- [(Yik -Yi. - (Yk -k .)(19)

i=!

and I

(20)
i=1

Next
l 0 = -1 ()2

7T2 +L7 (2 +,,) 2 ,(1
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Vyk.fds

+ C, 1 (j)= (
P I =)

introduction of (21) into (18) simplifies the latter to
2 1

a (k)+-, k= 1,2,...,K. (23)
Pk P

'The system (15), (16), (22) and (23) must be solved iteratively. Begin by simply

fitting as if T= a 2 to estimate u(l),vk(l),w(l), and obtain

1 t
(l) ' (Yik - ji(1) - Wk(1) -w,(1))2 (24)

from which compute W-Vk(2) (1/&,(1))/(z, 1/&2). Next calculate Vk -V.( 2 )

Y.k( 2 ) - 9..(2) using iWVk(2) in (15), and p-iv(2) - y..(2) from (16). It is now

possible to evaluate A(k;2) from (19), and (0)2(2) from (20), and hence Pk( 2 )

and P(2) from (23), after which a.,(2) from (22). Now recompute Wl'k(3)

(1/k(2)) / (I_ = ) = Pk(2)/fi( 2 ), and so repeat iteratively until conver-

gence is achieved. A solution procedure based on Newton--Raphson iteration

has also hceuI obtained; agreement of the two procedures is generally good.



3. LOG-EXTREME-VALUE MODEL (THE LOG EV MODEL)

An alternative to the previous model that may be attractive is the following

setup:

(a) '/ik is distributed according to a two-parameter Weibull; then it follows

mathematically that

(b) lik =In ik has the extreme-value distribution:

- exp [-Oi exp ((Yik - Ilk) /G)], with probability density function

fYk ( Yik; 7k, k; Oi ) =

S (25)
e xp [-0, ex p ((Yik - Il) 0,jO exp ((Yik - 770)/W 25

Note the occurrence of parameter 0j, which is intended to represent crew

effect, i.e. Oi is a way of individualizing crews comparable to the action of wi in

the previous model. Values of Oi are viewed as randomly selected latent factors

as were the wi values. The nature of the Oi contribution differs from wi in this

mo(el: whereas in the I,OG N model wi acted purely additively (on the log scale)

to affect the center (mean of logged response times) in a manner common to all

tasks, in the LOG 1V model it can be seen that logged times are represented as

Y 7k = qk + [(-ln 0) + fik], (26)

(,k having standardized extreme value df. For the present model, (25) or (26),

E [Iko0i] = '7k - 0 .5 772 k - k In i (27)

Var[Yki -- , - 1.64492 (28)

which permit initial parameter estimation by moments and facilitates compari-

son with the results of alternative models. Expression (26) implies that responses

to tasks are affected differentially: the greater the natural variation in perform-

ing a task by crews (measured by G for task k) the greater the "average" effect

9



on task duration due to crew effect. This is a specific form of interaction be-

tween crew and task effects that may (or may not) be reasonable in particular

circumstances.

Conditional on 0i, the crew i's response, Y,, on K different tasks has joint

density function

K

/ (2,; q = 1 fY,k (Yk; 77k, k; 0,), (29)
k=1

where co.ditional independence is assumed. In order to obtain the unconditional

joint density of response Y, remove the condition on 0i by integrating out; this

step corresponds to (10). Thus

whee (1i; 77,) E~ie ,C, ,iK}I d,, (30)
where

ci = exp ((Yik - 77k)/k) (31)
k=1

and
1KK

di = exp EZ(Yik - 7k)/ ) H (1/k) (32)
(k=1 )k=l

The above model closely resembles one introduced by Crowder (1985) and

Crowder and Kimb-r (1989). However, ours deals with the log time, and hence

is a location-scale model that more closely compares to the additive log-normal

model, although the ilk is not generally a mean, nor is k a standard deviation.

4. GAMMA VARIATION FOR 0

A search for mathematical tractability suggests that variation in 0 be de-

scribed by a gamma density:

e- ) -Gain -,1 (33)
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so E[0] = 1 and Var[O] = 3, and from which the joint density of observations

by crew i is

f_ ( r(K+ 1/,3) 1 K + 1//3 K-Y -Y I -, r(1/p) 1 + 3id,. (34)

The likelihood associated with I independent crews is

L ( +r(l11/),3K )I() (35)

or
I = In L = IKln3 + Iln(L(K + 1/)/r(1/o))

1 1 (36)

-(K + 1/)- In(1 +/ci) + In di.
i=1 i=l

After arrangement and re-parameterization so that Ok = In k the log-likelihood

becomes

K-I I K K
1l= IJ-' ln(k + 1/0) - (Kt + l/0t)1ln(1 + )3ci) + E 1_,(Yik--rlk)exp(-Ok) - IJ:Ok•

k=O i=1 i=1 k=1 k=1
(37)
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5. FITTING THE LOG-EXTREME VALUE (LOG-EV) MODEL

BY MAXIMUM LIKELIHOOD

To obtain the maximum likelihood estimates of the parameters we iteratively

solve the following equations, for which k = 1,2,..., K throughout:

o1/,9, = 0,

ol/alk = 0, (38)

191/0k = 0.

One Newton-Raphson iteration only is applied to each equation, after which

the entire process is repeated until convergence. Typically, only two or three

repetitions are required.

We record the derivatives needed for the above process.

5l I Ial -(K + 1/13) (cdI(1 + 1c)) + (1/,32) Z ln(1 + 3ci)
j=1 i=1

K-I

- E 1 l/0(1 + k3) (39)
k=O

tIOl -(1h + l)exp(-0~k) Eeri I(l +Oci) - e - b  (40)
Or7k i= 1

where rik = (Yik - rlk)/, a residual; finally

al (K/ + 1) Z rke/kI(1 + 3ci) - Erik - I. (41)

i=1 i=1

12



The second derivatives are

a21
- J - 32 + (K + 1/0) e 3/(1 + /34)2 + (2/32) e./(1 + 3,)

i---1 i=1

I K-1

-(2/3 3 )  ln(1 + /cc) - (1/#4) : (k + 1/3)- 2
i=1 k=O

K-I-(21 /' 3) E (k + 11/3) - ',

k=O
(42)

921 - (1 + If)ek E {(e r /(1 + c3)) [(flerik/(1 + f3ci)) - 1], (43)
i=1c2 (1+ t~ e/I )c) (

= (1 + K3) f{3 (rikerik/(1 +,3ci)) 2
-ertkrik(1 + r,&)/(1 + 3C)}

I

+ rik. (44)
i=1

In order to use the inverse of the Fisher information matrix to provide stan-

dard errors of the parameter estimates all cross-partial derivatives are required;

we omit recording these in the interest of brevity; the expressions may be ob-

tained from the authors. Our numerical experience has been that standard

errors obtained from Fisher information tend to be too small, as judged from

bootstrapping approaches next to be described.

6. BOOTSTRAPPING

A modern alternative for obtaining standard errors and approximate confi-

dence limits is the parametric bootstrap of Efron (1979; esp. Remark K, p.25).

This procedure has recently been applied to failure data in the context of the

Challenger disaster by Dalai, Fowlkes and Iloadley (1988) and goes as follows:

13



puto_ = (0'1p, PV 2,..VK; a2,...,a a ) in Model LOG N, and (03; 771,... , 77K; 01,. , OK )

in Model LOG EV. Note that 0 = (01,..., Op) here denotes a generic parameter;

it bears no direct relation to the it h crew effect in our LOG EV model, (25).

Then our procedure is this:

(a) Estimate 0 from data; the result is 0(0), the point estimate of the param-

eters.

(b) Provisionally adopt 0(0) as the true value in the parametric model, in the

present case (1) or (25).

(c) Simulate B independent data sets (bootstrap samples) from the model

evaluated at #(0): {Yik(b), i = 1,...,I, k = 1,2,...,K; b = 1,2,...,B}.

(d) Compute estimates of 0 for each sample, obtaining the bootstrap estimates

{(b),b = 1,2,.. ., B} = {(B)}, the bootstrap distribution of 0.

(e) Present relevant statistical summaries of marginal and joint distributions

of {0(B)}: e.g. use as standard error of0(0) components the corresponding

standard deviations of the bootstrap estimate; use as confidence limits

upper and lower percent points of the bootstrap sampling distributions,

suitably adjusted. We present numerical illustrations in the next section.

(f) The same procedure can evaluate standard errors of, and confidence limits

for predictions from data: in the present case prediction of the probability

that a response time exceeds any given value is evaluated in terms of the

model evaluated repeatedly at bootstrap parameter estimate values; see

Dalal et al (1988 ) for an example. See Section 9 for an example in the

present context.

Bootstrapping methods suggest themselves for comparing the adequacies of

different models for fitting and predicting from specific data sets. Specifically,

bootstrapping may assist in choosing between two, or more, candidate models.

14



In the present setting one may wish to predict the probability of non-success,

i.e., of response time exceeding some time window of duration t, P(t; 0). Models

A and B (e.g. our LOG N and LOG EV options) are estimated obtaining #A(0)

and 0B(O). Then generate bootstrap samples for A and B using RA(O) and

_B(O) respectively, resampling to estimate the mean-squared error of prediction

when Model i is used to predict, given that the data comes from Model j; here

{(i,j)} = {A,A; A, B; B,B; B,A}. Prefer the model whose use minimizes the

maximum estimated mean-squared error of prediction. An alternative strategy

is to prefer prediction from the most conservative model: the one predicting the

greatest risk; see Section 9 and Draper, Hodges, et al (1987).

Another option for residual examination is to compute estimates of the ex-

pected log response times associated with each Task/Crew combination. Since

crew effects are random, we estimate them in specific cases by their posterior

means.

For the LOG N model, examination of (10) reveals that the posterior density

j/is N / (/ + + 11a2)) . We substitute in the

mle's for the various parameters to estimate in a particular case:

(q (T-)2) / (1/72 + 1/0',)

and then from (1), (8), (15), (16)

Yik = (p-V.) + (vk V.) + LZi = y.. + (Y.k - 9.) + [Y.- 9..) / ()2] / [1/ ( 2) + 2ib']

(45)

where all averages are suitably weighted. Note that the above formula for the

mean acts, in effect as if a preliminary hypothesis test for homogeneity of crews

is being applied: if o, is very small, giving evidence that all crews are the same,

then the estimate Yik - Y.k, the (weighted) task mean for each crew. On the

other hand ifi2 is very large then Yik - Y.k + (Yi. - 9..), the task mean modified

by the estimated effect for crew i. The effectiveness of such a smooth transition

when pooling data was noted by Mosteller (1947).

15



For the LOG EV model take the expectation of (27) with respect to the

(estimated) posterior density of Oi, which is Gamma(c + 1/,, K + 1/0) from

(33) and (34). Using the first two terms of the asymptotic expansion we find

Yik = kEfYikI
= 1k - 0.5772 k - k [in (K + 1/,)- In (+j + 1/,,)- 0.5/(K ' 1/+ 6)

16



7. EXAMPLE DATA ANALYSES

The previous models have been used to andyze response time data from sim-

ulator experiments involving operators performing certain safety-related tasks.

In Tables 1 and 2 appear actual data from two such: System L and System D.

It is noted that certain task-crew combinations are missing, some because of

simulator failure. Two procedures were adopted for dealing with these cases:

(1) values were imputed by an EM-like process; see Little and Rubin (1987);

alternatively, (2) a likelihood approach was taken that simply omits such values

from the analysis by setting to unity the likelihood contribution associated with

a cell having a missing response. Both approaches can be useful; the former

leans more heavily on model correctness. The analyses reported here emphasize

the use of a simple imputation procedure; the incomplete data results are also

reported in the summary tables.

In addition to "true" missing values there are observations, here marked

with asterisks, that were judged to result from operators following non-standard

response strategies. It was judged to be useful to analyze the data both with,

and without, including such values; when omitted, those nonentries in the data

table were treated as missing values, entries imputed as above or treated as

missing values, and analyses made using LOG N and LOG EV models.

Results of fitting, along with bootstrapped standard errors, appear in Tables

3 and 4 for System L, and Tables 5 and 6 for System D. Both tables exhibit

main effects (# + Vk,rlk) and scale parameters (akandGk) for LOG N/EV mod-

els computed under A: missing values, and non-standard strategy values, both

treated as literally missing, using methods of the Appendix, and alternatively

with entries imputed, and B: only the "true" missing values treated as missing.

The imputation process used was iteration based on standard two-way ANOVA

with fixed task and crew effects. This is a convenient crude approximation to a

proper EM algorithmic approach, Little and Rubin (1987). In addition, random

crew effect variance parameters, o2 and 0 respectively for the two models, were

17



estimated. The resampling-refitting parametric bootstrap supplied the standard

errors; see Efron (1979) and Dalal, Fowlkes, and Hoadley (1988).

It is noted that for System L the fixed effects (pu--vk,ijk) under A and B agree

closely, with the exception of Tasks 2 and 9. Data for Task 9, in Table 1, exhibits

8 out of 18 missing values, and a further 4 non-standard strategy values, all of

which are far in excess of other times for that task. Data for Task 2 also exhibit

substantially many missing values and non-standard times, the latter having

resulted from operators following non-standard procedures and hence yielding

times more lengthy than the other, acceptable, values. The noticeable differences

are, however, still within 2 bootstrap standard errors. The corresponding scale

effects (e.g., log task time standard deviations) for Tasks 2 and 9 behave in

corresponding fashion, increasing by factors of 2 to 3 if the non-standard times

are included.

Similar behavior occurs for System D, although here the exceptions occur

for Tasks 4 and 8. There are fewer missing and non-standard times reported

for System D than for System L. Relatively large changes occur in the standard

errors, as well as in main effect and scale parameter estimates, when several

missing or non-standard times are encountered, and these are treated differently

in the analysis.

In order to check for the effect of imputation, and also for that of apparent

correlations between certain task times the analyses were re-run for System L

omitting Tasks 2, 4, and 9. The results appear in Tables 7 and 8. Although

specific numerical values are changed, the general pattern remains quite similar:

the new numbers are quite often well within a standard error of the estimates

that utilize data from all tasks.

18



8. MODEL CRITICISM VIA RESIDUAL EXAMINATION

In order to examine the overall fit of the models to data it is useful to con-

duct some form of residual analysis. We have chosen first to judge the overall

degree of fit by computing and summarizing uniform residuals as described by

Brillinger and Preisler (1983). In general for this procedure one estimates model

parameters 0, from data and then examines the estimated probability integral

transformation of the data, utilizing the fitted model: if the model is correct

then the latter should closely resemble the uniform distribution. In Figures 1

through 8 we display plots and summary statistics for such estimated proba-

bility integral transforms of the present data set. We also exhibit the result

of bootstrapping once: each model was allowed to create one set of bootstrap

sample data utilizing the fitted parameter values; these values were then treated

like raw data, and were then probability integral transformed and the results

plotted and summarized.

The results have different implications for the appropriateness of the models

for the two data sets. The left uniform plot of Figure 1 shows decided non-

uniformity of residuals when the raw data is fitted by LOG N using the methods

of the Appendix; however, if a bootstrap sample is generated using the fitted

model parameters the results are far more uniform. This strongly suggests that

the basic model is inappropriate. A similar implication is obtained by examining

Figure 3, the residuals of which are associated with LOG EV. Figures 2 and 4

describe the residuals when imputation of missing and/or non-standard values

is conducted. Notice that uniformity of residuals of the fit of the raw (plus

imputed) data is greatly enhanced. This is not surprising since imputation is

based on presumption of model correctness, and the missing and non-standard

values are imputed using the presumed model. The same general behavior is

observed when data from System D are fitted by the two models in various ways.

Here, however, the departure of the residuals from uniformity, as shown on the

left-most residual plots of Figures 5 and 7, seems less pronounced than is the
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case for System L. Again, imputation improves the uniformity of the residuals

and the apparent fit. We conclude that the log-additive models are more likely

to be trustworthy for system D than for System L.
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9. MODIFICATION OF THE MODELS FOR INITIAL DELAY

In the nuclear plant simulator exercises, and doubtless for other applications

as well, certain task response times may begin after a cue different from, and

later than, the actual initiating event. That is, the operational cue that triggers

response may occur some time after a possible original cueing event (e.g., the

first evidence of nuclear plant abnormality). Unfortunately, the time of the op-

erational cue is not usually recorded in simulator practice, and so response time

data, which may use initiating event time or some other well-specified event

time for reference, tends to exhibit an initial delay. Such delays may be inferred

from plant and initiating event information, or by examining the actual response

time data. Note that ignoring such delays if they are appreciable, i.e., fitting

a 2-parameter LOG N or LOG-EV model when a 3-parameter specification is

more appropriate can importantly change the estimated parameter values, par-

ticularly the LOG N ok or LOG EV G, the measures of within-task variability.

Specifically, if the delay is ignored and our current models employed uncritically

when a delay "Yk > 0 is required then the estimated values, &k and k, will be

biased downwards (u nder-estimated), sometimes quite significantly.

To illustrate the effect of a rough accounting for delay examine the Task 10

data for system L in Table 1. The minimum value is 1402 and the maximum

is 3450, so there is an appreciable delay associated with beginning the task

as compared to the variability of the response times. If the data is taken at

face value and our LOG N and LOG EV models fitted, then Table 3 exhibits

fi0 = 0.28 considerably smaller than that for other tasks. If, however, a rough

adjustment is made for delay by subtracting 1000 from each Task 10 response

time data value then the simple standard deviation estimate for logged (times-

1000) for Task 10 becomes 0.59, far more similar to other task response time

standard deviations.

At present the LOG N and LOG EV programs fit 2-parameter models, so

accounting for delay, 7k, must be done off-line. A formal approach to the es-
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timation problem for the Weibull model is given by Snith and Naylor (1987);

that paper also references other relevant articles.
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10. RISK CALCULATIONS

An important application of the LOG N and LOG EV models is to risk

analysis: it is desired to estimate the probability that a task's response time

occurs within a particular time window, for in that case (some aspect of) the

threat has been averted. We will refer to the probability that response time

exceeds the time window as the human interaction risk associated with the task.

It is easy to make point estimates of the required probabilities using both

existing models: one simply replaces the qodel parameters associated with the

task of interest by their maximum likelihood estimates. A natural way in which

to handle crew effect is simply to remove the crew condition w or 0 by integrating

it out with respect to the appropriate Normal/Gauss or Gamma estimated prior.

In order to assess the effect of a particular crew on the risk it is necessary to

calculate the posterior density for that crew and then integrate out on W or 0 with

respect to that posterior. It may well be of interest to compare the estimated

risk as it depends upon which crew is in place when an initiating event occurs

in order to assess the effect of individual crews directly on risk. This is not done

here.
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11. RISK UNCERTAINTY

In order to assess the the uncertainty inherernt in the risk estimation one may

once again bootstrap. The procedure is this:

(a) Estimate 0 from data to obtain o:

LOG N: a = (&,,&2)

LOG EV: 0o = ( , ,2

(b) Provisionally adopt 0o as the true value in the parametric model.

(c) Simulate B independent data sets from the model with parameter 0o

fyik(b), with b = 1,2,..., B}.

(d) Estimate 6 from each sample of (c). Obtain {0(b), b 1,2,...,B);

(e) Compute P{T.k > wkIO(b)} = P{ln Tk > In wkIO(b)};

SP {Yk > wk10(b)) - rk(b), where

Wk = In Wk.

The risk associated with Task k estimated from bootstrap sample b(b =

1,2,..., B) for each model. that is, calculate the probability that the time

window wk is exceeded using the bih set of parameters estimated. For our

two models and b = 1,2,..., B), and also b = 0, the original estimate, th',

becomes, respectively, for the two models,

Rk(b; LOG N) = 1 - 4 (w - (jL(b) + i(b))- (47)\ x/, (b) + &k(b) /

Rk(b; LOG EV) = + i 3(b)exp (w' - t k (b)) / (b)) - 113(b)  (48)
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The following table exhibits risk calculation for prescribed windows; the lengths

chosen are for illustration only. Calculations have been made both without non-

standard strategy values (A) and including non-standard strategy values (B);

any missing or left-out values were imputed as before.

Examination of the point estimates in Table shows that there is considerable

similarity in the orders of magnitude of the risks given by LOG N and LOG EV.

However, LOG EV values are consistently below those for LOG N, as are the

corresponding confidence limits. It is, thus, more conservative to adopt LOG N

model-based risk estimates than to use those based on LOG EV, or eq. "valently

the Weibull model. The exception, Task 9, is probably traceable to the many

missing values exhibited.

(f) Present statistical summaries of marginal and joint distribution of Rk(b):

e.g., use as standard error for the original risk estimate, Rk(O), the stan-

dard deviation

SRk = \j~~R~ ) 2 (49)

k=1

Note that the overall risk associated with a particular initiating event de-

pends upon the risks associated with all tasks (human interactions) associated

with response to the event. These risks may well be dependent probabilities,

at minimum because all tasks presumably confront the same crew. To handle

the dependency induced by a common crew one can assume conditional inde-

pendence, multiply risks conditional on crew to obtain the risks associated with

joint events, and then integrate out with respect to the crew's posterior density.

The calculation may be performed explicitly for the LOG EV model since a

closed-form elementary function expression for the extreme-value survivor func-

tion exists; no such simple calculation can be carried out for the LOG N, but

numerical procedures are always available.
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Examination of the results suggests considerable similarity between the risks

calculated using the LOG N and LOG EV models. It is, however, noticeable

that for all tasks except Tasks 3 and 9, LOG N predicts a slightly greater risk

than does LOG EV, and generally with slightly larger standard error. Of course

in most cases shown the risks associated with the window values in our example

are too high to be realistic; the windows were chosen for illustration only.

The above calculations have been carried out using parameter values ob-

tained under imputation. Thus the apparent similarity of risks across models is

probably overstated, and, in view of the suspicion cast on the fits to system L

data (see Section 8) we should treat the System L risks with caution.
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12. SUMMARY AND CONCLUSIONS

In this article we have suggested and shown how to fit, by maximum likeli-

hood, two models for operator response times. The fits of the models to two sets

of (actual) data are displayed and compared. Uncertainties are assessed by para-

metric bootstrapping. Complications involving missing values and consequent

lack of balance are dealt with by direct likelihood computation as well as by a

simple form of imputation. Finally, the fitted models are applied to estimate

the risk of exceeding (hypothetical) time windows; associated uncertainties, i.e.,

standard errors and confidence limits, are obtained by bootstrapping.

We view this work as a pilot or feasibility study intended to illustrate and

explore possibly useful approaches and methodology to an important area. Out-

standing problems remain: the models put forward were chosen for their abilities

to account for some aspects of the real situation and for relative tractability, but

many other forms could be conjured up, fitted, and applied to infer risk, as de-

fined here. It is somewhat interesting to find that risks estimated from the same

data using the different models agree rather closely; it is not unlikely that the

agreement will stiffer if the windows are increased so as to achieve much smaller,

and presumably more realistic risk values.

The bootstrap standard errors and confidence limits warn that although

the present models tend to agree in their risk assessments the uncertainty is

still rather large, even if wrong-model or structural uncertainty is ignored; see

Draper, Hodges et al (1987) for discussion. In order to reduce the uncertainty of

estimation, e.g. to reduce standard error size, it is often proposed to aggregate or

pool data, either from similar tasks in the same environment (plant), or for the

same task across "similar"environments. Both procedures are worthy of investi-

gation, but will be credible only if suitable adjustments are made to reduce bias.

Adjustments can be carried out by using models resembling the types suggested

here, possibly enhanced to include regression terms "explaining" responses in

terms of measured and qualitative crew and plant characteristics ("performance
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shaping factors" is the jargon in certain risk assessment circles). To date, for-

mal adjustment attempts by regression have been inconclusive but are a form of

insurance that should be included, and validated to the greatest extent possible,

if aggregation or pooling is contemplated, particularly across plants. Inter-plant

variability may be appreciable because of variations in management philosophy

and style.

In general, it seems advisable to utilize bootstrapping as extensively as possi-

ble to build an appreciation for the variabilities and uncertainties involved when

using models. Bootstrapping that uses direct re-sampling as originally discussed,

Efron (1979), seems difficult or impossible for situations such as are described

here unless vastly more data becomes available and better, more scientifically

based, models and true replications can be employed. Consequently, use of

parametric bootstrapping becomes necessary. However, parametric bootstrap-

ping that consumes data from more realistic, and elaborate, models and their

fits to simpler structures can be useful and informative. But such exercises can-

not directly substitute for data obtained under truly operational circumstances,

which even the best simulator data can not aspire to be.
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APPENDIX A. MAXIMUM LIKELIHOOD ESTIMATION FOR LOG

N MODEL, WITH MISSING VALUES

Let dik = 1 if the observation at (ik) [i.e., for crew i, task k] is available;

otherwise dik = 0. Then the component of likelihood associated with (Crew) i

is

e-gY~k-_14 k- __) 2 k

k=1

K

dk(yk-A-Lk-w,)/ k
e k=1

Now write

dik (Yik 2  -

k=1 k T K 1

After differentiation re Lo,

K dk (oi - w)

k=1 k"

which implies, identifying terms of order 1 and w, and writing/K
E dik (Yik - 1 - uk)pk = Wi/r2
k=l

KEdikPk = 1/Tr
k=1

K

Hence rj2 = 1/ F dkpk
k=1

K K K
ai = F_ dik (Yik - - vk)Pk = Yi. - it - r2 F dikkpk, where yi. = F_ dikyikpk

k=1 k=I k=l

and
K

Ki E dik (Yik -- _ Vk -_Wi)2 pk.

k=1
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Thus re-write the likelihood as
f -(\ -;_D= e-{( ,) 2/r2}e - !2/dw

1 K e 2 Ile 0.2d
q J ,' )~ = e-2 -1 ( /-r ) Ed"0d.kd,r--r

e 2 e 2 1 \ VT:
cx

{k=ik .eJ

Htence the likelihood assumes the form

= 1 . 1,i -2(2.02 VT.

i=1 H=, ok V? + 0,-2

Taking logarithms, we obtain
, 11 2 1 K I "K

1=21nL=- Ki - E 2 ' 2 +-ln1Q-ZElnklfl0r2Zln(7i+aw2)
7=2 i=1 ' W i=1 k=1 i=1

- K- -1:0 +± ln72+Zlnkllnpk--(n T 2 + a
2)

i=1 i i=1 k=1 i=1

where

Differentiating first re i, we obtain

a - ( + 24; +

o E- - °' = -1Op -= 'O

Hence

I -9
i=10

31r2+0,2) -0
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Y.. E dtkVkPk)

1 1 1 (j.-rj2kdikkkk)

kk

=> (7( +02

Next, difrnier i

j=1 2 JM + 2v OD

Furthe simplificatin results i

~Zd~,iTZdE dyk (Yik- P V)k -(yDO-P vj-Ik - ___
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Hence

v 1d dtI -,T2YE ik (Yik - JA- Vk - Ci) Pk +(YiL - JA- c) + (T, +W,.

=V' j di di _k-J k-Cd)P YIPCi (T-2 +a.2)J

We now differentiate re pl, noting

(dikPk)

= ridat (yjj - it- vi) +±1 di (Yik - /I- iik)P (-r:4dii)}

= - dil y - P. - VI - Ti 2 +2 dd k ( -p .- J.')p ) (Pk-p v
I k

-dil (Yik - P. - Vk- Wi) {(yiL - p - vi - w.D) - 2r,2 E3 dik (Yik -PI - Vk-(D)P

Noting also that

-ri3 E dik (!/tk - PI - Vk - COO)pA = rj dik (Yik 11 - Vk) Pk -,r E dijkPk = -i C= 0
k k k

it follows that
-~ d ~ (C)-,)2 4

49pi
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O t2, r,2 ( i U I _L i

(-1) (1- rid~i) 1 _r-d)+ n, 1 (-r'd,)(.r, + C'2)2 (.r, + 0,)

Hence,

P0=

At = ni dl [(yi, - it - v, -wj) (Yi IL vi _t -),+ + + 2 (Z ) +  + -7 2 + o
Il'2 -4+ + +F

Finally, differentiating re 0,, we find

L , (i + 0( + ,) - o

which implies

= (T 2 r2 (4+ a)i 2 + "L) =1

The following iterative procedure was employed:

(a) Use imputed values to obtain A(0),& , (0),jk (0),3k (0)[k= 1,...,I]

(b) Solve for/ (1) using (A-i) Update Coi

(c) Solve for it1 (1) using (A-2) Update L,

(d) Solve for P3, using (A-3) Update wbi, r 2

(e) Solve for t7, using (A-4)

Repeat (b) through (e) until convergence.
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